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Abstract

A non-linear mathematical model has been obtained by applying a modified conventional identification
technique based on the principle of harmonic balance. In this study, analytical work is carried out on this
identified non-linear model by applying the first-harmonic approximation solution and the Floquet theory.
The resulting criteria for bifurcations can be used to evaluate the operational range of a system employing
such a non-linear actuator. We also employ the method of Lyapunov exponents to show the occurrence of
chaotic motion and to verify the above analyses. Finally, various methods, such as the state feedback
control and injection of dither signal control are used to control chaos effectively.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the characteristics of magnetic bearings are inherently non-linear due to
the non-linearities of electromagnetic forces. To accurately control or predict the performance of
this system, the effects of these non-linearities must be taken into consideration. Therefore, in our
previous work [1], an experiment with a symmetric rotor with a spring device, as shown in Fig. 1,
was carried out by applying a series of non-linear electromagnetic forces to identify a non-linear
model for the system.
For easy reference, the experimental results presented in the previous work are repeated here.

Fig. 2 shows the frequency responses of the rotor displacement for an input amplitude p0 ¼ 3:0 V
in decreasing forcing frequency (o) from 80 to 34:4 Hz: It can be seen that if the system starts at
high frequency and the forcing frequency is slowly decreased, there is an increase in amplitude

ARTICLE IN PRESS

*Corresponding author. Fax: +886-4-851-1224.

E-mail address: changsc@mail.dyu.edu.tw (S.-C. Chang).

0022-460X/$ - see front matter r 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsv.2003.11.033



along the resonant part of the response curve. The smooth variations in amplitude and frequency
continue until o ¼ 37:6 Hz; where the first period-doubling bifurcation occurs. In this type of
period-doubling bifurcation a stable limit cycle loses its stability, while another closed orbit is
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Fig. 1. Schematic diagram of the electromagnetic system.

Fig. 2. Bifurcation diagram obtained from the experiment.
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born whose period is twice the period of the original oscillation. Beyond this point, the vibrating
amplitude of the rotor and the coil current grow sharply. As the forcing frequency continues to
decrease, the trajectory continues to experience period-doubling bifurcations, which eventually
result in likely chaotic motion, and finally the rotor strikes the electromagnet, i.e., the system
blows up.
This shows that the system exhibits complicated non-linear behavior due to the non-linearities

of the electromagnetic force. In engineering applications, this should be taken into consideration
at the design stage.
To study the dynamics of this system further we have modified the conventional identification

technique based on the principle of harmonic balance to identify this system. The resulting non-
linear model [1] is obtained as

d2y

dt2
þ b1

dy

dt
þ b2y þ b3y

2 þ b4y
3;

b5ðI0 þ iÞ6=3 þ b6ðI0 þ iÞ2=3 þ b7ðI0 þ iÞ4=3 þ b0 ¼ 0; ð1aÞ

L1ðI0 þ iÞ�1
di

dt
þ iR ¼ KAp0 sinot; ð1bÞ

where I0 is the biased current calculated directly from the average experimental current time
series, i is the oscillating current about I0 ð¼ 0:68 AÞ; y is the oscillating displacement of the rotor
about a reference point, R is the resistance of the coil, and KA ð¼ 2:254Þ is the power amplifier
gain. The other necessary coefficients for Eqs. (1) are listed in Table 1.
This model successfully captures the primary characteristics of the system by comparing the

frequency responses from simulations to those from experiments. However, theoretical analyses of
this model showing whether the identified non-linear mathematical model obtained from the
experiment can predict and characterize the dynamics of the real system have not yet been carried
out. Furthermore, the occurrence of chaotic motion at the moment the rotor strikes the
electromagnet has also not been undertaken.
In this study, analytical work is performed for this identified model using the first-harmonic

approximation solution and the Floquet theory [2]. The method of Lyapunov exponents [3] is also
applied to show the occurrence of chaotic motion and the resulting criteria for bifurcations are
used to compare with those obtained from the Floquet theory and experimental results to prove
the effectiveness of the analysis.
In many engineering problems of chaos control it is important to develop control techniques to

drive a chaotic attractor to a periodic orbit. Since the pioneering work of Ott et al. [4] in
controlling chaos, many modified methods and other approaches have successively been proposed
[5–10]. Finally, in order to improve the performance of a dynamics system or avoid the chaotic
behavior, sometimes we have to convert a chaotic behavior into a periodic motion. Various
methods are presented to control chaos: the state feedback control [8,9] and application of dither
signal control [10].
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2. Stability and bifurcation analysis

To perform the bifurcation analysis, we derive approximate periodic solutions for Eqs. (1) and
examine their instability by considering the variational Hill type equation [11]. For convenience,
we first let on ¼

ffiffiffiffiffi
b2

p
; O ¼ o=on and t ¼ ont; and normalize Eqs. (1) to the form

d2y

dt2
þ

b1

on

� �
dy

dt
þ y þ

ðb3y2 þ b4y
3 þ b5ðI0 þ iÞ6=3 þ b6ðI0 þ iÞ2=3 þ b7ðI0 þ iÞ4=3 þ b0Þ

o2
n

¼ 0; ð2aÞ

di

dt
¼

ðKAp0 sinOt� iRÞðI0 þ iÞ
L1on

: ð2bÞ

To facilitate the calculations, the non-linear terms in Eqs. (2) are expanded in a Taylor series
and truncated at the fourth order, i.e.,

d2y

dt2
þ 0:33179

dy

dt
þ y þ 2:27324y2 � 9:62586y3 þ 0:43493i;

� 0:86517i2 þ 1:26763i3 � 0:95581i4 þ 0:13755 ¼ 0; ð3aÞ

di

dt
¼

ð2:254p0 sinðOtÞ � 9:79iÞðI0 þ iÞ
onL1

: ð3bÞ

With this equation, we can employ the harmonic balance method [2] to approximate a periodic
solution for this system. Because Eqs. (1) are unsymmetrical, solutions for this system will also be
unsymmetrical. Such unsymmetrical solutions may simultaneously contain a constant term and
both even and odd harmonics. Generally, when the system is operated in the region of the
principal resonance, the lowest harmonic may dominate the amplitude of the response. Those
harmonics with higher frequencies are relatively small and such that the effects of the higher
harmonics can be neglected. Thus, the solutions for Eqs. (3) are assumed to be

yðtÞ ¼ A0 þ A1 cosðOtþ y1Þ; ð4Þ

iðtÞ ¼ B0 þ B1 cosðOtþ y2Þ: ð5Þ
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Table 1

Identified results

System parameter Identified value

b1 43.843782

b2 1:7461747� 104

b3 3:969473� 104

b4 �16:80843� 104

b5 3:3106� 104

b6 10:505� 104

b7 �9:98479� 104

b0 �3:443392� 104

L1 0:018096
R 9:7922279
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Substituting Eqs. (4) and (5) into Eqs. (3), neglecting the higher harmonic terms and matching
coefficients of sinðOtÞ; cosðOtÞ; and the constant term to zero, we obtain a set of algebraic
equations for the unknown parameters A0;A1; y1;B0;B1; y2 as follows:

G1 cosðy1Þ þ G2 sinðy1Þ þ G3 cosðy2Þ ¼ 0; ð6Þ

G2 cosðy1Þ � G1 sinðy1Þ � G3 sinðy2Þ ¼ 0; ð7Þ

F1 cosðy2Þ þ F2 sinðy2Þ ¼ 0; ð8Þ

F0 þ F2 cosðy2Þ � F1 sinðy2Þ ¼ 0; ð9Þ

H0 þ H1 sinðy2Þ ¼ 0; ð10Þ

J ¼ 0; ð11Þ

where G1;G2;G3;F0;F1;F2;H0;H1; J are all functions of A0;A1; y1;B0;B1; y2;O; p0; which are
shown in Appendix A. By performing numerical calculations, Eqs. (6)–(11) can be solved
simultaneously.
With the approximate solutions for Eqs. (3) at hand, we are ready to examine the local stability

of the solutions using the Floquet theory [2]. To proceed, we consider the perturbed solution as
[12–15]

*yðtÞ ¼ yðtÞ þ dyðtÞ; ð12Þ

where dy represents a small perturbation. Because the current i in Eq. (2b) is independent of rotor
displacement and the bifurcations for i were never seen to occur in the experiment, the assumed
solution (5) is unperturbed for the following analysis. Inserting the above perturbed solution into
Eqs. (3), employing the assumed solutions yðtÞ and iðtÞ in Eqs. (4) and (5) and noting that dy is
relatively small, the perturbation dy is then governed by the linearized variational equation

d2dy

dt2
þ 0:33179

ddy

dt
þ ð%l0 þ %l1 cosðOtþ y1Þ þ %l2 cosð2Otþ 2y1ÞÞdy ¼ 0; ð13Þ

where the coefficients %l0�2 are functions of A0;A1; y1;B0;B1; y2;O; p0 and are shown in Appendix
A. The higher order harmonics have been truncated.
Eq. (13) is clearly a Hill’s type equation. With this equation, the behavior of the perturbation dy

with time and hence the stability of the harmonic solution (4) can be examined straightforwardly.
Eq. (13) has two parametric excitations: cosðOtþ y1Þ and cosð2Otþ 2y1Þ; with driven frequencies
O and 2O; respectively. The Floquet theory [2] suggests that a system driven parametrically may
exhibit resonance whenever the driven frequencies are equal to 2

ffiffiffiffiffi
%l0

p
=k; where k is an integer andffiffiffiffiffi

%l0
p

represents the normalized natural frequency of Eq. (13). In the A1-O plane, these resonance
conditions represent the points along the O axis from which the unstable regions emanate. For our
system, k ¼ 1; the so-called first order instability, is of interest.
For the excitation cosðOtþ y1Þ; the instability can occur close to OE2

ffiffiffiffiffi
%l0

p
: This type of

instability is helpful in predicting the occurrence of period-doubling bifurcations. The central ideal
is that any parametric term in the linearized variational equation with a period, which is the same
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as that of the assumed solution, could give rise to the appearance of a new subharmonic
component having twice the period of the assumed solution. On the other hand, the excitation
cosð2Otþ 2y1Þ leads to the stability limit, i.e., the so-called jump phenomenon, when OE

ffiffiffiffiffi
%l0

p
:

Such an instability coincides with the point of the vertical tangents on the resonance curves A1ðOÞ
and A0ðOÞ: In our system, this is unlikely to occur, because it only appears period-doubling
bifurcation from experimental data (as shown in Fig. 2). The system may have blown up before
entering this instability limit.
In light of the above and according to the Floquet theory, inside the unstable region solutions

for Eq. (13) with a period Tf or 2Tf ðTf ¼ 2p=OÞ are possible [12,15]. That is,

dy ¼ eetfðtÞ: ð14Þ

When e ¼ 0 is at the stability limit, and fðtÞ is a periodic function with period Tf or 2Tf . In the
case where fðtÞ is assumed to have period Tf ; it simply leads to the jump phenomenon. On the
other hand, when fðtÞ is assumed to have period 2Tf ; we can predict the occurrence of period-
doubling bifurcation. We recall that the approximate theory of Hill’s equations allows one to
assume functions fðtÞ as a truncated Fourier series. Hence, at the stability limits, the first
approximation solution of perturbation dy can be assumed as

dy ¼ eet C0 þ C1 cos
O
2
tþ W1

� �� �
; ð15Þ

and at the stability limit ðe ¼ 0Þ; dy becomes

dy ¼ C0 þ C1 cos
O
2
tþ W1

� �
: ð16Þ

Substituting Eq. (16) into Eq. (13) and applying the method of harmonic balance, one finds that
for C0; C1 and W1 to be non-trivial, the following condition must be satisfied:

FcðO; p0Þ ¼ 5:167A2
1 � 131:29A0A

2
1 þ 833:914A2

0A
2
1 � 0:0275O2 �

O4

16
¼ 0: ð17Þ

Using criterion (17) and Eqs. (6)–(11), all of the period-doubling bifurcation points corresponding
to various values of p0 and O can be predicted by numerical calculations [12]. As an example, for
p0 ¼ 3:0 V; the combination of Eqs. (17) and (6)–(11) predicts that the resonance curve A1 first
enters the unstable region at O ¼ 1:812 in decreasing the driving frequency, which is the first
period-doubling bifurcation point.
From the engineering point of view, criterion (17) is practical in the design stage, because

beyond this bifurcation point the oscillating amplitude increases rapidly with decreasing forcing
frequency. Within a considerable narrow range of forcing frequency, the system consequently
leads to chaotic motion with relatively large amplitude and finally blows up. Thus, the first period-
doubling bifurcation point can be treated as an operational limit in frequency for this system. The
results of the analytical analysis are useful at the design stage to evaluate the operational range for
systems utilizing a non-linear electromagnet as an actuator.

ARTICLE IN PRESS

S.-C. Chang, H.-P. Lin / Journal of Sound and Vibration 279 (2005) 327–344332



3. Lyapunov exponent and Lyapunov dimension

The analyses presented in Section 2 show the possibility for the identified model to exhibit
period-doubling bifurcations, and it can serve to predict the points where the first period-doubling
bifurcation occurs. However, a likely chaotic motion exhibited in the experiment is still unable to
be ascertained. In this section, the method of Lyapunov exponents is applied to verify the
occurrence of chaotic motion for the identified model.
For every dynamic system, there is a spectrum of Lyapunov exponents ðlÞ [3] that tells how

length, areas and volumes change in phase space. As a criterion for the existence of chaos, one
needs only to calculate the largest exponent, which tells whether nearby trajectories diverge ðl > 0Þ
or converge ðlo0Þ on average. Any bounded motion in a system containing at least one positive
Lyapunov exponent is defined as chaotic, while for periodic motion, the Lyapunov exponents are
not positive.
Referring to the algorithm for calculating the Lyapunov exponents described by Wolf et al. [3],

the evolution of the largest Lyapunov exponent for p0 ¼ 3:0 V is computed as displayed in Fig. 3.
From this figure, we find that the onset of chaotic motion is at O ¼ 1:710; because at this point,
P4; the largest Lyapunov exponent, changes its sign from negative to positive when the normalized
forcing frequency is slowly decreased. For points P1–3; the largest Lyapunov exponents are shown
to approach zero. The system at these points may undergo bifurcations. However, the Lyapunov
exponent at such a point provides no means to determine the type of bifurcation, so more
advanced tools such as those presented in Section 2 must be applied. For example, the analysis in
Section 2 predicts the occurrence of the first period-doubling bifurcation at O ¼ 1:812; while point
P1; where the largest Lyapunov exponent first approaches zero, is found at O ¼ 1:8475:
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Fig. 3. The largest Lyapunov exponents of the system for p0 ¼ 3:0 V:
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When the forcing frequency is larger than P1; O ¼ 1:95; as an example, the Lyapunov exponents
computed from Eqs. (2) are l1 ¼ �0:082501; l2 ¼ �0:396172; and l3 ¼ �4:017426: Their sum
l1 þ l2 þ l3 ¼ �4:496099; which is negative, showing that the motion of the rotor at these values
finally converges to a stable limit cycle. Indicating with l1X?Xln the Lyapunov exponents of a
dynamical system, Kaplan and Yorke [16] provide an estimation for the Lyapunov dimension dL as

dL ¼ j þ
1

jljþ1j

Xj

i¼1

li; ð18Þ

where j is the largest integer that satisfies
Pj

i¼1 li > 0: By applying the technique, the Lyapunov
dimension of Eqs. (2) for O ¼ 1:95 is dL ¼ 1: Because the value of the Lyapunov dimension is an
integer, the system has a periodic motion. When the forcing frequency O decreases across the
bifurcation point, for example O ¼ 1:708; the Lyapunov exponents are l1 ¼ 0:1447; l2 ¼ �0:6234
and l3 ¼ �4:01773:Here, the Lyapunov dimension is dL ¼ 2:232: It should be noted that the value
of the Lyapunov dimension is not an integer; the system at this point can process fractal basin
boundaries [14]. This reveals that a measure of the fractal geometry of the attractor and the
property of sensitivity dependence on initial conditions exist in the system. Fig. 4 shows the fractal
basin boundaries in such a case, with fixed p0 ¼ 3:0 V; O ¼ 1:708 and various initial conditions.
For calculation [13], 1600� 250 sets of initial conditions were chosen in the form of a grid, and
integration of Eqs. (2) using a fifth order Runge–Kutta integration algorithm was continued until
the system either converged to the bounded attractors or diverged. Initial conditions in the light
regions lead to the divergent solutions, while the dark regions are the basins for the bounded
attractors. The fractal structure points out that small uncertainties in the initial conditions can lead
to unpredictability of the system output.
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Fig. 4. Fractal basin boundaries of the system for p0 ¼ 3:0 V at O ¼ 1:708:
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4. Simulations and discussions

To clearly understand the characteristics of this system, we carry out a series of numerical
simulations from Eqs. (2). The commercial package DIVPRK of IMSL [17] in FORTRAN
subroutines for mathematics applications is used to solve ordinary differential equations.
The resulting bifurcation diagram is shown in Fig. 5. It can be clearly seen from this figure
that the first period-doubling bifurcation occurs at about O ¼ 1:863; and that at O ¼ 1:715
chaotic motion appears. More details about the various responses exhibited by the system
are presented in Fig. 6. There, each type of response is characterized by a Poincar!e map
(Poincar!e velocity vs. phase angle) and frequency spectrum. Figs. 6(a) and (b) show that
the Tf -period mainly involves the constant term and the fundamental components. From
Figs. 6(c) and (d), we find that a cascade of period-doubling bifurcations causes a series of
subharmonic components, which show the bifurcations with new frequency components at O=2;
3O=2; 5O=2;y . The particular features of two descriptors characterize the essence of the
chaotic behavior: the Poincar!e map and the frequency spectrum. The Poincar!e map shows an
infinite set of points referred to as a ‘‘strange attractor’’. Simultaneously, the frequency spectrum
of chaotic motion is a continuous broad spectrum. The two features—‘‘strange attractor’’ and
continuous type Fourier spectrum—are strong indicators of chaos. Chaotic motions are shown in
Figs. 6(g) and (h).
It is clearly shown that the simulating results are quite in agreement with the analysis in the

previous sections.
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Fig. 5. Bifurcation diagram of the system for p0 ¼ 3:0 V:
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Fig. 6. Frequency spectra and Poincar!e maps of various responses of numerical simulations for p0 ¼ 3:0 V: (a) and (b)
period-one motion, O ¼ 1:95; (c) and (d) period-two motion, O ¼ 1:80; (e) and (f) period-four motion, O ¼ 1:7255;
(g) and (h) chaotic motion, O ¼ 1:708:
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5. Controlling chaos

Analyzing and predicting the behaviors of a chaotic system is beneficial, but to maximize the
benefit, one has to be able to control it. In order to improve the performance of a dynamic system
or avoid the chaotic phenomena, we must convert a chaotic behavior into a desired stable periodic
motion.
In this section, we discuss how chaos can be converted into periodic motion by minimal efforts.

Two methods, which are used to control chaos, will be presented: the addition of state feedback
control [8,9], the addition of dither signals [10].

5.1. State feedback control

Recently, Cai et al. [8,9] have suggested a simple and effective state feedback control algorithm.
This method can be explained briefly: consider the n-dimensional dynamical system

’x ¼ f ðx; tÞ; ð19Þ

where xðtÞARn is the state vector and f ¼ ð f1;y; fi;y; fnÞ; where fi is a linear or a non-linear
function and f includes at least one non-linear function. Suppose fkðx; tÞ is the key non-linear
function that leads to chaotic motion in system (19); then only one term of state feedback of an
available system variable xm is added to the equation that includes fkðx; tÞ as follows:

’xk ¼ fkðx; tÞ þ Pxm; k;mAf1; 2;y; ng; ð20Þ
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Fig. 7. Maximum Lyapunov exponents versus feedback gains.
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Fig. 8. Bifurcation diagram for feedback gains ðPÞ between 0 and 0.6.

Fig. 9. Chaotic motion of the uncontrolled system ðP ¼ 0:0Þ: (a) time response; (b) phase portrait.
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Fig. 10. Period-two motion of the system with state feedback control ðP ¼ 0:2Þ: (a) time response; (b) phase portrait.

Fig. 11. Period-one motion of the system with state feedback control ðP ¼ 0:5Þ: (a) time response; (b) phase portrait.
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where P is feedback gain. Other functions keep their original forms. In order to understand this
simple controlling approach in a better way, this method is applied to Eqs. (2) numerically.
In the absence of the state feedback control, Eqs. (2) exhibit chaotic behavior under the

parameters A0 ¼ 3:0 V and O ¼ 1:708: Consider the effect of the state feedback control added to
the right-hand side of the Eq. (2b). By increasing the feedback gain P from 0 to 0.75, the chaotic
behavior disappears. The evolution of the largest Lyapunov exponent for A0 ¼ 3:0 V and O ¼
1:708 is shown in Fig. 7. The resulting bifurcation diagram is shown in Fig. 8. It can be clearly
seen from those two figures that the chaotic motion exists in the region between P ¼ 0 and
P ¼ 0:092: When P ¼ 0; Eqs. (2) displays chaotic motion (see Figs. 9). When P ¼ 0:2; a period-2
orbit (see Figs. 10) exists in Eqs. (2). And the period-1 orbit in Eqs. (2) with P ¼ 0:5 is shown in
Figs. 11. In further simulations, when 0:10oPo0:75; Eqs. (2) exhibit low-periodic orbits.
Therefore, in order to suppress the occurrence of chaos, simple state feedback of a system

variable can be enough to disturb the balance of dynamical behavior in the chaotic system.

5.2. Dither control

Using the dither signal method, we can convert a chaotic motion to a periodic orbit or a steady
state motion dependent on the system input. Let us add a square-wave dither signal W in front of
the non-linearity f ð:Þ: Thus, f has the effective value output:

m ¼ 1
2
½ f ðy þ W Þ þ f ðy � W Þ�: ð21Þ
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Fig. 12. Bifurcation diagram of the system with a square-wave dither, where W denotes the amplitude of the dither

signal.
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As a result, the system equation can be written as

’y ¼ m: ð22Þ

Consider the effect of the dither control added to the system equations (2) under the parameters
A0 ¼ 3:0 V and O ¼ 1:708: By increasing the amplitude of the square-wave dither signal from
W ¼ 0 to 0:09; the dynamics change from chaotic behavior to periodic motion. The evolution of
the bifurcation diagram is shown in Fig. 12. Now, we select the amplitude of square-wave dither
W ¼ 0:085: The time response of displacement is shown in Fig. 13(a) where the square-wave
dither signal is added after 100 s: The chaotic behavior system is converted into a period-one
orbit. The phase portrait of the controlled system is shown in Fig. 13(b).

6. Conclusions

This work is concerned with the non-linear behaviors and chaos control of a structure with a
non-linear electromagnetic system using the identified non-linear model. We have examined the
local stability of the theoretical solutions by studying the approximating Hill’s type variational
equation and we have pointed out that the analysis enables us to predict the type and the
occurrence of bifurcations. In practice, the resulting criteria for bifurcations contribute to the
evaluation of the operational range of a system that employs such a non-linear actuator.
Furthermore, by applying the methods of harmonic balance, the Floquet theory and the
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Fig. 13. Injecting a square-wave dither signal control which is used to control chaotic motion of the system for

p0 ¼ 3:0 V at O ¼ 1:708: The dither signal ðW ¼ 0:085Þ is added after 100 s: (a) displacement time series; (b) controlled
orbit.
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Lyapunov exponents with the assistance of numerical computations, the behaviors of a cascade of
period-doubling bifurcations routes to chaos obtained from the identified mathematical model
coincide with that obtained from experiments.
The presence of chaotic behavior is generic for certain non-linearities, ranges of parameters and

external force, where one wishes to avoid or control so as to improve the performance of a
dynamic system. The state-feedback control technique is simple and effective for chaos
suppression. It can be implemented by adding the feedback of suitable variable to the original
system with sufficiently high control gain to suppress the development of chaos in many generally
chaotic dynamics. We can also efficiently convert the chaotic system into a periodic orbit by
injecting a dither signal in front of the non-linearity of a chaotic system.

Appendix A

The coefficients, G1;G2;G3;F0;F1;F2;H0;H1; J; %l0�2; are shown as follows:

J ¼ 0:1375557253927953þ A0 þ 2:273239327084512� A2
0 � 9:62585816871588� A3

0

þ 1:136619663542256� A2
1 � 14:43878725307382� A0 � A2

1

þ 0:4349254734283934� B0 � 0:865174989812019� B2
0

þ 1:267631885968822� B3
0 � 0:955810585368086� B4

0 þ 0:872550216745302� B5
0

� 0:884558900402063� B6
0 þ 0:958619077428414� B7

0 � 1:088173763685085� B8
0

þ 1:278110432622419� B9
0 � 0:4325874949060096� B2

1

þ 1:901447828953233� B0 � B2
1 � 2:867431756104258� B2

0 � B2
1

þ 4:362751083726512� B3
0 � B2

1 � 6:634191753015473� B4
0 � B2

1

þ 10:06550031299835� B5
0 � B2

1 � 15:23443269159119� B6
0 � B2

1

þ 23:00598778720354� B7
0 � B2

1 � 0:3584289695130323� B4
1

þ 1:636031656397441� B0 � B4
1 � 4:975643814761605� B2

0 � B4
1

þ 12:58187539124793� B3
0 � B4

1 � 28:56456129673348� B4
0 � B4

1

þ 60:3907179414093� B5
0 � B4

1

� 0:2764246563756447� B6
1 þ 2:096979231874656� B0 � B6

1

� 9:52152043224449� B2
0 � B6

1 þ 33:55039885633849� B3
0 � B6

1

� 0:2975475135076404� B8
1 þ 3:145349892781734� B0 � B8

1;

G1 ¼A1 � cosðy1Þ þ 4:546478654169026� A0 � A1 � cosðy1Þ

� 28:87757450614764� A2
0 � A1 � cosðy1Þ � 7:21939362653691� A3

1 � cosðy1Þ

� A1 � O2 � cosðy1Þ;

G2 ¼ � 0:3317906657883207� A1 � O� sinðy1Þ;

G3 ¼ 0:4349254734283934� B1 � cosðy2Þ � 1:730349979624038� B0 � B1 � cosðy2Þ
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þ 3:802895657906466� B2
0 � B1 � cosðy2Þ � 3:823242341472344� B3

0 � B1 � cosðy2Þ

þ 4:362751083726512� B4
0 � B1 � cosðy2Þ � 5:307353402412378� B5

0 � B1 � cosðy2Þ

þ 6:710333541998898� B6
0 � B1 � cosðy2Þ � 8:70539010948068� B7

0 � B1 � cosðy2Þ

þ 11:50299389360177� B8
0 � B1 � cosðy2Þ þ 0:950723914476617� B3

1 � cosðy2Þ

� 2:867431756104258� B0 � B3
1 � cosðy2Þ þ 6:544126625589766� B2

0 � B3
1 � cosðy2Þ

� 13:26838350603094� B3
0 � B3

1 � cosðy2Þ þ 25:16375078249587� B4
0

� B3
1 � cosðy2Þ � 45:70329807477357� B5

0 � B3
1 � cosðy2Þ

þ 80:5209572552124� B6
0 � B3

1 � cosðy2Þ þ 0:5453438854658137� B5
1 � cosðy2Þ

� 3:317095876507736� B0 � B5
1 � cosðy2Þ þ 12:58187539124793� B2

0

� B5
1 � cosðy2Þ � 38:08608172897797� B3

0 � B5
1 � cosðy2Þ

þ 100:6511965690155� B4
0 � B5

1 � cosðy2Þ þ 0:5242448079686639� B7
1 � cosðy2Þ

� 4:760760216122247� B0 � B7
1 � cosðy2Þ

þ 25:16279914225387� B2
0 � B7

1cosðy2Þ þ 0:6290699785563471� B9
1cosðy2Þ;

F0 ¼ �0:6409680633837136� p0 � 0:942600093211344� p0 � B0;

F1 ¼ 2:784607521417466� B1 � cosðy2Þ þ 8:19002212181608� B0 � B1 � cosðy2Þ;

F2 ¼ �B1 � O� sinðy2Þ;

H0 ¼ 2:784607521417466� B0 þ 4:095011060908039� B2
0 þ 2:047505530454019B2

1;

H1 ¼ 0:471300046605672� p0 � B1 � sinðy2Þ;

%l0 ¼ � 1� 4:546478654169026� A0 þ 28:87757450614764� A2
0

þ 14:43878725307382� A2
1;

%l1 ¼ �4:546478654169026� A1 þ 57:75514901229528� A0 � A1;

%l2 ¼ 14:43878725307382� A2
1:
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